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Computational methods for discovery of sequence elements that are enriched in a target set compared with a
background set are fundamental in molecular biology research. One example is the discovery of transcription factor
binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements.
Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach
to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for
measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the
tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly
generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked
lists that resolves these four issues. We demonstrate the implementation of this framework in a software application,
termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences.
We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50
novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them
was further investigated to gain new insights on transcription regulation networks in yeast. For example, our
discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding
enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation
data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that
promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation
are mechanistically linked. Overall, we demonstrate that the statistical framework embodied in the DRIM software tool
is highly effective for identifying regulatory sequence elements in a variety of applications ranging from expression
and ChIP–chip to CpG methylation data. DRIM is publicly available at http://bioinfo.cs.technion.ac.il/drim.
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Introduction

Background
This paper examines the problem of discovering ‘‘interest-

ing’’ sequence motifs in biological sequence data. A widely
accepted and more formal definition of this task is: given a
target set and a background set of sequences (or a background
model), identify sequence motifs that are enriched in the target set
compared with the background set.

The purpose of this paper is to extend this formulation and
to make it more flexible so as to enable the determination of
the target and background set in a data driven manner.

Discovery of sequences or attributes that are enriched in a
target set compared with a background set (or model) has
become increasingly useful in a wide range of applications in
molecular biology research. For example, discovery of DNA
sequence motifs that are overabundant in a set of promoter
regions of co-expressed genes (determined by clustering of
expression data) can suggest an explanation for this co-
expression. Another example is the discovery of DNA
sequences that are enriched in a set of promoter regions to
which a certain transcription factor (TF) binds strongly,
inferred from chromatin immuno-precipitation on a micro-
array (ChIP–chip) [1] measurements. The same principle may
be extended to many other applications such as discovery of
genomic elements enriched in a set of highly methylated CpG
island sequences [2].

Due to its importance, this task of discovering enriched
DNA subsequences and capturing their corresponding motif

profile has gained much attention in the literature. Any
approach to motif discovery must address several fundamen-
tal issues. The first issue is the way by which motifs are
represented. There are several strategies for motif represen-
tation: using a k-mer of IUPAC symbols where each symbol
represents a fixed set of possible nucleotides at a single
position (examples of methods that use this representation
include REDUCE [3], YMF [4,5], ANN-SPEC [6], and a
hypergeometric-based method [7]) or using a position weight
matrix (PWM), which specifies the probability of observing
each nucleotide at each motif position (for example MEME
[8], BioProspector [9], MotifBooster [10], DME-X [11], and
AlignACE [12]). Both representations assume base position
independence. Alternatively, higher order representations
that capture positional dependencies have been proposed
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(e.g., HMM and Bayesian networks motif representations
[13]). While these representations circumvent the position
independence assumption, they are more vulnerable to
overfitting and lack of data for determining model param-
eters. The method described in this paper uses the k-mer
model with symbols above IUPAC.

The second issue is devising a motif scoring scheme. Many
strategies for scoring motifs have been suggested in the
literature. One simple yet powerful approach uses the
hypergeometric distribution for identifying enriched motif
kernels in a set of sequences and then expanding these motifs
using an EM algorithm [7]. The framework described in this
paper is a natural extension of the approach of [7]. YMF [4,5]
is an exhaustive search algorithm which associates each motif
with a z-score. AlignACE [12] uses a Gibbs sampling algorithm
for finding global sequence alignments and produces a MAP
score. This score is an internal metric used to determine the
significance of an alignment. MEME [8] uses an expectation
maximization strategy and outputs the log-likelihood and
relative entropy associated with each motif.

Once a scoring scheme is devised, a defined motif search
space is scanned (either heuristically or exhaustively) and
motifs with significantly high scores are identified. To
determine the statistical significance of the obtained scores,
many methods resort to simulations or ad hoc thresholds.
Several excellent reviews narrate the different strategies for
motif detection and use quantitative benchmarking to
compare their performance [14–18]. A related aspect of
motif discovery, which is outside the scope of this paper,
focuses on properties of clusters and modules of TF binding
sites (TFBS). Examples of approaches that search for
combinatorial patterns and modules underlying TF binding
and gene expression include [19–23].

Open Challenges in Motif Discovery
One issue of motif discovery that is often overlooked

concerns the partition of the input set of sequences into target

and background sets. Many methods rely on the user to provide
these two sets and search for motifs that are overabundant in
the former set compared with the latter. The question of how
to partition the data into target and background sets is left to
the user. However, the boundary between the sets is often
unclear and the exact choice of sequences in each set
arbitrary. For example, suppose that one wishes to identify
motifs within promoter sequences that constitute putative
TFBS. An obvious strategy would be to partition the set of
promoter sequences into target and background sets accord-
ing to the TF binding signal (as measured by ChIP–chip
experiments). The two sets would contain the sequences to
which the TF binds ‘‘strongly’’ and ‘‘weakly,’’ respectively. A
motif detection algorithm could then be applied to find
motifs that are overabundant in the target set compared with
the background set. In this scenario, the positioning of the
cutoff between the strong and weak binding signal is
somewhat arbitrary. Obviously, the final outcome of the
motif identification process can be highly dependent on this
choice of cutoff. A stringent cutoff will result in the exclusion
of informative sequences from the target set while a
promiscuous cutoff will cause inclusion of nonrelevant
sequences—both extremes hinder the accuracy of motif
prediction. This example demonstrates a fundamental diffi-
culty in partitioning most types of data. Several methods
attempt to circumvent this hurdle. For example, REDUCE [3]
uses a regression model on the entire set of sequences.
However, it is difficult to justify this model in the context of
multiple motif occurrence (as explained below). In other
work, a variant of the Kolmogorov-Smirnov test was used for
motif discovery [24]. This approach successfully circumvents
arbitrary data partition. However, it has other limitations
such as the failure to address multiple motif occurrences in a
single promoter, and the lack of an exact characterization of
the null distribution. Overall, the following four major
challenges in motif discovery still require consideration: (c1)
the cutoff used to partition data into a target set and
background set of sequences is often chosen arbitrarily; (c2)
lack of an exact statistical score and p-value for motif
enrichment. Current methods typically use arbitrarily set
thresholds or simulations, which are inherently limited in
precision and costly in terms of running time; (c3) a need for
an appropriate framework that accounts for multiple motif
occurrences in a single promoter. For example, how should
one quantify the significance of a single motif occurrence in a
promoter against two motif occurrences in a promoter?
Linear models [3] assume that the weight of the latter is
double that of the former. However, it is difficult to justify
this approach since biological systems do not necessarily
operate in such a linear fashion. Another issue related to
motif multiplicity is low complexity or repetitive regions.
These regions often contain multiple copies of degenerate
motifs (e.g., CA repeats). Since the nucleotide frequency
underlying these regions substantially deviates from the
standard background frequency, they often cause false-motif
discoveries. Consequently, most methods mask these regions
in the preprocessing stage and thereby lose vital information
that might reside therein; (c4) criticism has been made over
the fact that motif discovery methods tend to report
presumably significant motifs even when applied on ran-
domly generated data [25]. These motifs are clear cases of
false positives and should be avoided.
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Author Summary

A computational problem with many applications in molecular
biology is to identify short DNA sequence patterns (motifs) that are
significantly overrepresented in a target set of genomic sequences
relative to a background set of genomic sequences. One example is
a target set that contains DNA sequences to which a specific
transcription factor protein was experimentally measured as bound
while the background set contains sequences to which the same
transcription factor was not bound. Overrepresented sequence
motifs in the target set may represent a subsequence that is
molecularly recognized by the transcription factor. An inherent
limitation of the above formulation of the problem lies in the fact
that in many cases data cannot be clearly partitioned into distinct
target and background sets in a biologically justified manner. We
describe a statistical framework for discovering motifs in a list of
genomic sequences that are ranked according to a biological
parameter or measurement (e.g., transcription factor to sequence
binding measurements). Our approach circumvents the need to
partition the data into target and background sets using arbitrarily
set parameters. The framework is implemented in a software tool
called DRIM. The application of DRIM led to the identification of
novel putative transcription factor binding sites in yeast and to the
discovery of previously unknown motifs in CpG methylation regions
in human cancer cell lines.
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Data Lends Itself to Ranking in a Natural Manner
In this paper we describe a novel method that attempts to

solve the above-mentioned four challenges in a principled
manner. It exploits the following observation: data often
lends itself to ranking in a natural manner, e.g., ranking
sequences according to TF binding signal: ranking according
to CpG methylation signal, ranking according to distance in
expression space from a set of co-expressed genes, ranking
according to differential expression, etc. We exploit this
inherent ranking property of biological data in order to
circumvent the need for an arbitrary and difficult-to-justify
data partition. Consequently, we propose the following
formulation of the motif finding task: given a list of ranked
sequences, identify motifs that are overabundant at either end of the
list.

Our solution employs a statistical score termed mHG
(minimal hypergeometric) [26]. It is related to the concept of
rank-imbalanced motifs, which are sequence motifs that tend to
appear at either end of a ranked sequence list. In previous
work [26], the authors used mHG to identify sequence motifs
in expression data. We use this simple yet powerful approach
as the starting point for our study.

Overview
The rest of this paper is divided into two main parts, each

of which is self-contained: in the Results we briefly outline
our method and describe new biological findings that were
obtained by applying this method to biological data. We
address challenge (c4) by testing the algorithm on randomly
ranked real genomic sequences. In the Methods, we describe
the mHG probabilistic and algorithmic framework and
explain how we deal with challenges (c1)–(c3).

Results

Statistics and Algorithms in a Nutshell
Based on the mHG framework, we developed a software

tool termed DRIM (discovery of rank imbalanced motifs) for motif
identification in DNA sequences. A flow chart of DRIM is
provided in Figure 1. The formal introduction and details of
the mHG statistics are given in Methods. However, to
facilitate the explanation and interpretation of our biological
results, we begin with a brief description of the method.

Suppose we are given a set of DNA sequences and some
measured signal associated with each sequence. We rank the
sequences according to the signal. Now, given a sequence
motif, we wish to assess whether that motif tends to appear
more often at the ‘‘top’’ of a list compared with the
‘‘remainder’’ of the list. The mHG score captures this type
of motif significance. More precisely, the mHG score reflects
the surprise of seeing the observed density of motif
occurrences at the top of the list compared with the rest of
the list under the null assumption that all configurations of
motif occurrences in the list are equiprobable. A unique
feature of the mHG statistics is that the cutoff between the
top and the rest of the list is chosen in a data-driven manner
so as to maximize the motif enrichment. This is done by
computing the motif enrichment over all possible set
partitions and identifying the cutoff at which maximal
statistical significance is observed.

The search for this optimal cutoff introduces a multiple
testing problem. To solve this without resorting to multiple

testing corrections, which diminish the score’s sensitivity, we
provide a novel algorithm for computing the exact p-value of
mHG scores (see Methods, Calculating the p-value of the
mHG score). This eliminates the need to resort to simulations
or exhaustively calculated tables.
Our method also includes a new approach to modeling

motif multiplicity by incorporating a multidimensional
hypergeometric framework (see Methods, Multidimensional
mHG score). Unlike some models, which assume linearity
(e.g., that two binding motifs have twice the binding capacity
as one motif), our model does not make such pre-assump-
tions. Instead, the degree of surprise is adjusted for each
motif according to its own occurrence multiplicity distribu-
tion.
DRIM scans through a motif space, computes the mHG p-

value of these motifs and reports the significant ones (see
Methods, The DRIM software).

Proof of Principle
We begin by testing our method on synthetically generated

clear-cut positive and negative control cases. We do this to
verify that DRIM accurately identifies motifs in well-charac-
terized and experimentally verified examples and at the same
time avoids false identification of motifs in randomly ordered
genomic sequences. The latter objective is of particular
importance since the issue of false identification has been
mentioned as one of the main shortcomings of motif
discovery approaches. For example, in a previous study, six
different motif discovery applications were used to search for
TFBS motifs [25]. Each of the programs attempted to measure
the significance of its results using one or more enrichment
scores. The authors report that the applications outputted
high-scoring motifs even when applied to random selections
of intergenic regions. A different paper reports clusters of
genes whose expression patterns correlate to the expression
of a particular TF [27]. These clusters were then analyzed for
enriched motifs. Again, the authors report that random sets,
with sizes matching those of the real clusters, contained a
large number of motifs with significant scores.
To test our method’s false-prediction rate, we performed

the following negative control experiment: five different
random permutations of ChIP–chip data were generated by
randomly selecting 400 promoters and randomly permuting
their ranks. DRIM was then applied to these ranked lists and
scanned more than 100,000 different motifs in each one.
None of the motifs that were scanned had a significant
corrected mHG p-value ,10�3. Note that to get the corrected
p-values, two levels of multiple test corrections are per-
formed: correcting for the number motifs that are tested; and
correcting for multiple cutoffs that are tested as part of the
mHG optimization process.
How do the p-values of random motifs compare with those

of true biological motifs? To test this, we chose five TFs
(BAS1, GAL4, CBF1, INO2, and LEU3) whose motif binding
sites are well-characterized and experimentally verified. We
applied DRIM to the ChIP–chip data of these TFs as reported
in [25]. In all instances, the true motifs were identified with
corrected p-values of 10�6, 10�9, 10�76, 10�18, and 10�8,
respectively. A comparison of the p-value distribution of the
motifs in the randomly ordered sequences with that of the
verified TFBS motifs is given in Figure S3. In all instances the
true TFBS motifs were predicted with p-values that were
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several orders of magnitude more significant than the best p-
value of a motif in the randomly permuted data. This
indicates that the enrichment signals of true TFBS, as
captured by the mHG p-value, are clearly distinct from the
signals we expect to find in random rankings of genomic
sequences.

TFBS Prediction Using ChIP–chip
To further test the effectiveness of our method, we used it

for identification of TFBS in yeast by applying it to the
Harbison and Lee–filtered ChIP–chip datasets [25,28], con-
taining measurements of 207 TF binding experiments in
several conditions (for details regarding dataset-filtering see
Methods). Interestingly, we observed that in many of these
datasets longer intergenic regions are biased toward stronger
TF binding. We elaborate on this sequence length bias in the
Methods section and in Figure S1.

In each of the ChIP–chip experiments, we ranked the
intergenic regions according to the TF binding signal (we use
the p-value of enrichment for the sequence represented on

the array). This was used as input for DRIM, which then
searched for motifs that tend to appear densely at the top of
the ranked lists. If such a motif does exist, with a p-value less
than 10�3, then we hypothesize that it is biologically
significant and that it contributes to the TF’s binding, either
directly or indirectly.
The results on the Harbison filtered dataset are summar-

ized in Table S2. A TF was assigned a motif if such was found
in at least one condition. We compared the DRIM predictions
with previously reported TFBS discoveries in ChIP–chip that
incorporated predictions of six other motif discovery
methods and conservation data [25]. The results of this
comparison are summarized in Figure 2.
Overall, DRIM identified 50 motifs that were not picked up

by the six other methods as reported in [25]. We further
investigated these putative TFBS for additional evidence that
they are biologically meaningful. First, we found that seven of
them (ASH1, GCR1, HAP2, MET31, MIG1, RIM101, and
RTG3) are in agreement with previously published results

Figure 1. DRIM Flow Chart

DRIM receives a list of DNA sequences as input and a criterion by which the sequences should be ranked, for example, TF binding signals as measured
by ChIP ChIP–chip:
(i) The sequences are ranked according to the criterion.
(ii) A ‘‘blind search’’ is performed over all the motifs that reside in the restricted motif space (in this study the restricted motif space contains ;100,000
motifs, see Methods, The DRIM software). For each motif an occurrence vector is generated. Each position in the vector is the number of motif
occurrences in the corresponding sequence, (the figure shows the vector for the motif CACGTGW).
(iii) The motif significance is computed using the mHG scheme, and the optimal partition into target and background sets in terms of motif enrichment
is identified. The promising motif seeds are passed as input to the heuristic motif search model and the rest are filtered out.
(iv,v) The motif seeds are expanded in an iterative manner (the mHG is computed in each lap), until a local optimum motif is found.
(vi) The exact mHG p-value of the motif is computed. If it has a p-value , 10�3, then it is predicted as a true motif (the choice of this threshold is
explained in Results, Proof of principle). The output of the system is the motif representation above IUPAC, its PSSM, mHG p-value, and optimal set
partition cutoff.
doi:10.1371/journal.pcbi.0030039.g001
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that are based on experimental techniques other than ChIP–
chip. Second, we compared them with a list of conserved
regulatory sites in yeast that was recently inferred using
conservation-based algorithms [29]. Ten of our putative TFBS
match these conserved sites (ARG81, ARO80, ASH1, CRZ1,
DAL81, HAP2, IME1, MET31, MIG1, and RTG3). Taken
together, these findings provide a strong indication that at
least some of the new motifs identified by DRIM are true
biological signals. In the following subsections, we focus on a
few of these putative TFBS (see Figure 3) and present
additional evidence that supports their biological role. We
use these findings to discover new interactions in the yeast
genetic regulatory network.

Aro80 transcription regulatory network. The Aro80 TF
regulates the utilization of secondary nitrogen sources such as
aromatic amino acids, as part of the Ehrlich pathway [30]. In
particular, it is involved in the regulation of 2-phenylethanol,
a compound with a rose-like odor, which is the most-used
fragrance in the perfume and cosmetics industry [31]. Due to
its commercial potential, the optimized production of this
substance has received much attention [31].

We id en t i fi ed the r emarkab l y l a r g e mo t i f ,
WWNCCGANRNWNNCCGNRRNNW, in Aro80 rich media
ChIP–chip data [25] with p-value , 10�11 (see Figure 3). We
refer to this putative binding site as BSAro80. Furthermore, we
discovered the same motif in two other independent sources
of data: Aro80 rich media experiment in the Lee filtered
dataset and Aro80 SM condition (amino acid starvation), both
with p-value , 10�6. Only seven copies of this motif occurred
in the entire yeast genome. These seven copies are distributed

among four promoters, three of which have two copies of
BSAro80 each. This unusual motif distribution is combinato-
rially surprising and therefore suggests biological signifi-
cance. We note that BSAro8 shares some similarity with a
previously reported Aro80 motif [29,32]. However, the
sequence of BSAro8 provides new insights into the mechanism
of the yeast Ehrlich pathway that cannot be explained by the
previously described motif. (i) It was previously shown that
Aro80 enhances the transcription of Aro9 and Aro10 [30,32].
We found BSAro80 in the promoters of both genes—two
copies in each promoter. (ii) Interestingly, BSAro80 appears in
the promoter of the gene coding to the Aro80 protein. Since
the BSAro8 motif appears only in four promoters in the entire
genome, it is highly unlikely that this occurred by chance. We
therefore hypothesize that Aro80 self-regulates its own
transcription by directly binding to its own promoter. (iii)
The fourth promoter (when ranking according to Aro80 rich
media ChIP–chip data [25]) contains two BSAro80 elements,
one on the sense and the other on the anti-sense. This
configuration is shared by two divergently transcribed genes,
NAF1 and Esbp6. The latter gene was previously shown to
have increased transcription in the presence of phenylalanine
as sole nitrogen source [30], suggesting it may play a role in
the Ehrlich pathway. Esbp6 is a monocarboxylate permease
and might be involved in the transfer of substrates of the
Ehrlich pathway across the plasma membrane. (iv) We
analyzed the conservation of BSAro8 in four yeast strains
and found all seven of its copies to be conserved in the
different strains. (v) Aro80 belongs to the Zn2Cys6 family of
TFs that are known to bind CCG elements separated by a

Figure 2. Comparison between Predictions of DRIM and Published Predictions of Six Other Methods and Conservation Data as Reported in [25]

Overall, out of 162 unique TFs, DRIM identified significant motifs for 82 TFs with p-value ,10�3. Out of the 162 TFs, DRIM and the other applications
agree on 96 TFs: 27 TFs for which a similar motif was found and 69 TFs for which no significant motifs were found. There are five TFs for which the
motifs predicted by DRIM and other applications differ; 11 for which the other applications identified motifs that DRIM did not; and 50 for which DRIM
identified a motif that the other applications did not (for details see Tables S2 and S3). Sequence logos were generated using the RNA Structure Logo
software [56].
doi:10.1371/journal.pcbi.0030039.g002
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spacing. Indeed, in addition to other conserved nucleotides,
the motif contains CCG gapped tri-nucleotides. (vi) In a
previous study, in order to identify cis-acting sequences
involved in Aro9 induction, a series of deletions were
produced in the Aro9 promoter region, and the expression
of a reporter gene was monitored [32]. The authors
concluded that the sequence CCGN7CCGN7CCGN7CCG in
the Aro9 promoter is responsible for Aro80 binding. We
note, however, that the changes in expression caused by the
mutations can be interpreted differently, and in fact they are
even more consistent with our BSAro80 motif. Deletions or
mutations that simultaneously altered all motif copies in the
promoter dramatically reduced expression, while those which
altered only some of the copies caused a more mild decrease.
Other deletions that did not affect any BSAro80 motif did not
affect the expression at all. A detailed analysis of the BSAro80
element with respect to these mutagenesis studies is given in
Figure S4.

A putative transcription network of Aro80 that incorpo-
rates these findings is shown in Figure 4. Note that GATA
binding sites are found adjacent to the BSAro80 motif. We
further discuss the potential role of these motifs in the
Discussion.

The predicted motif BSAro80 exemplifies the usefulness of
the mHG flexible cutoff. Our process partitioned the data
into a target set containing the top first four promoters (the
only promoters in the genome in which the motif resides) and
a background set containing the rest of the promoters. Other
methods that used a fixed binding signal cutoff (p-value ,

10�3) for partitioning the data included 16 other promoters
in the target set, in addition to the four promoters in which
BSAro80 appears. Consequentially, the signal-to-noise ratio
decreases, which might explain why other methods did not
identify the BSAro80 element.
Taken together, our results suggest the predicted BSAro80

motif is indeed an Aro80 binding site.
CA repeats are correlated with TF binding. We identified a

bi-nucleotide CA repeat motif with variable length ranging
from six to 62 in the Harbison filtered dataset. The CA repeat
motif was found to be highly enriched for seven TFs: ARR1,
GCR2, IME4, and ACE2 in rich media condition and AFT2,
MAL33, and SFP1 in H2O2Hi condition. Furthermore, for two
of these TFs (GCR2, IME4), we rediscovered the same CA
repeat motif in the Lee filtered dataset. In other words, for
the specified TFs, we identify a highly significant correlation
between a sequence’s capacity to bind the TF and the
presence of a CA repeat in the sequence. This type of low
complexity motifs are often filtered by current methods. One
exception is a recent work in which a CACACACACAC
sequence was found to be enriched in Rap1 experiments [33].
It has been previously hypothesized that CA repeats might

have a functional role in TF binding [34]. It was proposed that
CA repeats, which are often conserved in evolutionary distant
organisms, are likely to impose a unique DNA tertiary
structure that aids in the identification of other specific
regulatory elements [34]. Our findings constitute concrete
evidence to this phenomena in seven (of 82) different TFs.
They are also in agreement with another study in which CA

Figure 3. Examples of TFs for Which DRIM Identifies Novel Motifs

We further investigated these motifs and show evidence of their biological function. YPD, H2O2, and SM denote the ChIP–chip experimental conditions
[25] in which the motifs were identified.
doi:10.1371/journal.pcbi.0030039.g003
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repeat–containing sequences in the human gamma-globin
gene promoter required for efficient transcription were
identified using in vitro site-directed mutagenesis [35]. Taken
together, our findings and other observations suggest CA
repeats play a role in the DNA binding of some TFs.

Detection of indirect TF–DNA binding using ChIP–chip.
IME1 is a TF that activates transcription of early meiotic
genes. We identified a motif, CGGCCG, with p-value , 10�11

that is enriched in the sequences to which IME1 binds in
H2O2 condition. Although this motif was not identified by
other methods as reported in [25], we found evidence that
suggests it is biologically meaningful. First, we note that this
motif is a perfect palindrome, which is often characteristic of
TF binding sites. Second, the same motif was identified as
evolutionarily conserved in IME1-bound sequences as in-
ferred from ChIP–chip data [29]. Third, IME1 interacts with
Ume6, also a transcriptional regulator of early meiotic genes,
which was previously shown to bind the same DNA motif,
CGGCCG [36]. We conclude that the IME1-discovered motif
is likely due to the following scenario: IME1 binds to Ume6,
which binds to CGGCCG sequences on the DNA. The cross
linking in the ChIP–chip protocol fixes these bindings, and
the immunoprecipitation of IME1 actually precipitates the
entire complex. We therefore get enriched CGGCCG
sequences in IME1 experiments due to indirect binding to
this DNA motif.

In another example, we identified the same two distinct

motifs, M1 ¼ TGTGGCSS and M2 ¼ CACGTG, in rich media
ChIP–chip experiments of three different TFs: Met4, Met31,
and Met32. Furthermore, we rediscovered the same motifs in
other experimental conditions of the same TFs. Met4, Met31,
and Met32 are three factors involved in the sulfur amino acid
pathway, and the fact that the same two motifs were
independently predicted for each of the TFs is unlikely to
occur by chance, suggesting the predictions are biologically
meaningful. In a previous work it was shown that Met4 is
tethered to the DNA sequence AAACTGTG via two alter-
native complexes, Met4-Met28-Met31 and Met4-Met28-Met32
(the binding is thought to occur via Met31/32) [37]. This
sequence partially overlaps motif M1. Furthermore, the
complex Met4-Met28-Cbf1 was shown to bind motif M2 [38].
Previous findings are summarized in Figure S5A. The above
explains why we predict M1 for Met4 and M2 for Met31/32.
However, it does not explain why we also predict M2 for Met4
and M1 for Met31/32. The most likely explanation for this is
the existence of a direct interaction between the two
complexes Met4-Met28-Cbf1 and Met4-Met28-Met31/32. If
such an interaction exists, then the cross linking would fix the
two complexes and cause the immunoprecipitation of Met4,
Met31, and Met32 to precipitate the same set of sequences,
thus causing the same motifs to appear in the experiments of
all three TFs, which is exactly what DRIM identifies. This
point is illustrated in Figure S5B. The idea of direct

Figure 4. The Hypothetical Regulatory Network of Aro80

Copies of the BSAro80 motif (on the sense and antisense) are shown as rectangles on the promoter regions.
(A) BSAro80 is conserved in four strains of yeast as shown using the University of California Santa Cruz browser conservation plots. Aro80 regulates the
utilization of secondary nitrogen sources such as aromatic amino acids by binding genes that participate in the catabolism of aromatic amino acids. We
hypothesize that it also binds to its own promoter region and introduces a positive feedback self loop.
(B) Part of the Aro80 promoter sequence is shown with bases of the BSAro80 motif colored in red. Interestingly, there are three GATA binding sites that
are adjacent to the BSAro80 motif (bases colored in green). These sites bind GATA factors that are known to play a role in nitrogen catabolite repression.
We hypothesize that they are also involved in the repression of Aro80 expression by physically binding to the region near BSAro80, thus making it
inaccessible to Aro80 binding. This in turn breaks the positive feedback loop and represses the expression of Aro80 itself and other Aro80 regulated
genes.
doi:10.1371/journal.pcbi.0030039.g004

PLoS Computational Biology | www.ploscompbiol.org March 2007 | Volume 3 | Issue 3 | e390514

Discovering Motifs in Ranked Lists



interaction between the two complexes is also in agreement
with previous results [37].

Overall, the results shown in this subsection demonstrate
that DRIM is able to identify previously ignored subtle signals
in ChIP–chip data that stem from indirect bindings of factors
to DNA. This type of information can be useful for inferring
novel protein–protein interactions.

Condition-dependent motifs. A comparison was made
between the predicted motifs of the same TF in different
experimental conditions (see Table S2). These seem to fall
into two main categories: (i) motifs whose enrichment is
condition-dependent, and (ii) motifs whose enrichment is
condition-independent, suggesting the TF is bound to the
DNA regardless of condition. In the latter, although the same
motif was predicted in different conditions, the motif
enrichment varied considerably. For instance, the GAL4
binding site CGGN11CCG, previously reported in [1] and
other literature, was predicted in both YPD and galactose
conditions. However, the enrichment varied considerably
with p-values 10�7 and 10�11, respectively. This several-fold
difference in enrichment is consistent with what is known
about the role of GAL4 in galactose metabolism. It suggests
that GAL4 has a preference to bind CGGN11CCG DNA
regardless of condition. However, in the presence of galactose
and absence of glucose, this preference becomes much more
significant. Another example of a condition-invariant motif
whose binding strength is subject to experimental condition
is that of the Aro80 TF. This demonstrates that DRIM can be
used not only to identify binding sites but also to distinguish
between different modes of TF binding.

Motif Discovery in Human Methylated CpG Islands
To examine our method’s ability to predict sequence

motifs that stem from data other than TF binding, DRIM was
applied to a dataset containing the human cancer cell line–
methylated CpG islands (for dataset details, see Methods) to
seek for motifs that are enriched in hypermethylated regions.
The promoters were ranked according to methylation signal,

with hypermethylated promoters at the top. Note that
different replicates of the same cell line may yield different
ranking of the promoters.
DRIM identified significantly enriched motifs in each of the

four cancer cell lines. Table 1 shows all the motifs that were
independently discovered in at least two different replicates
of the same experiment or that are in agreement with
previous work [2]. Overall, DRIM discovered 13 motifs: ten
novel motifs and three that have been previously predicted in
hypermethylated CpG island promoters in the same cancer
cell lines [2]. Some of these motifs have also been independ-
ently identified in methylated CpG regions of other cell lines
[39,40].
Interestingly, nine of the novel ten motifs were independ-

ently identified in DNA regions to which the proteins of the
Polycomb complex bind [41–43]. The Polycomb complex is
involved in gene repression through epigenetic silencing and
chromatin remodeling, a process that involves histone
methylation. The fact that these two distinct key epigenetic
repression systems, namely histone methylation and CpG
methylation, bind to regions that share a similar set of
sequence motifs suggests they are linked. To further establish
this link we applied DRIM to Polycomb complex bound
promoters in human embryonic fibroblasts [44]. We found
four motifs that are similar to the CpG methylation motifs
(Table 1). Our findings are consistent with a recent paper that
showed that the EZH2 Polycomb protein binds methyltrans-
ferases via the Polycomb complex [45].
Most of the motifs we found are similar across more than

one type of cancer cell line, e.g., variants of the GCTGCT
motif appear in Caco-2, PC3, and Polyp1 cancer cell lines.
This suggests that the same DNA binding factors are involved
in CpG methylation of different types of cancers. It is also
important to note that some of the motifs we discovered are
G–C rich. The enrichment of these motifs may be partially
attributed to the G–C content bias that is found in CpG
methylation data.
The DRIM motif identification process can be used not

Table 1. Enriched Motifs Associated with CpG Methylation in Four Human Cancer Cell Lines and Comparison to Motifs in Regions
Bound by the Polycomb Complex

Cell Line CpG Methylation

Motif

Number of

Experiments

Average

p-Value

Notes Polycomb

Complex Motif

Caco-2 SSCCCCANGa 4 ,10�10 Novel prediction Yes [41,44]

Caco-2 CNGCTGCa 3 ,10�5 Novel prediction Yes [41]

Caco-2 GAGGGA 2 ,10�4 In agreement with [2]

Caco-2 DGAGAGV 2 ,10�4 Novel prediction Yes [41,43,44]

Carcinoma CA repeat 2 ,10�79 Novel prediction Yes [41,42]

PC3 CA repeat 1 ,10�7 Novel prediction Yes [41,42]

PC3 GGGGTNCCa 1 ,10�6 In agreement with [2] Yes [44]

PC3 ACACNCAC 2 ,10�10 In agreement with [2]

PC3 GCTGC 2 ,10�5 Novel prediction Yes [41]

PC3 RGCGCAA 2 ,10�4 Novel prediction

Polyp CA repeat 2 ,10�58 Novel prediction Yes [41,42]

Polyp CNNGCGCCa 3 ,10�13 Novel prediction Yes [44]

Polyp GCTGCNBB 2 ,10�6 Novel prediction Yes [41]

Number of Experiments corresponds to the number of replicate experiments of the same cell line in which the same motif was independently identified. The CA repeat motifs have a
variable length.
Polycomb Complex Motif denotes motifs that appear in regions bound by the Polycomb complex [41,42,44].
aMotifs that have G-C content .66%. Their enrichments are partially attributed to the G-C content bias that is found in the CpG methylation data.
doi:10.1371/journal.pcbi.0030039.t001
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only to identify novel motifs but also to partition the data in a
biologically meaningful manner. In [2] the authors used a
fixed threshold on the methylation signal (p-value , 0.001 ) to
partition the dataset. Consequently, they identified 135
hypermethylated promoters. A data-driven partition would
be to use the threshold that yielded the maximal motif
enrichment. For example, in the Caco2 cell line, we identified
the same motif as in the previous work [2]. However, the
motif maximal enrichment was found in the top 209
promoters (an increase of 54% in target set size).

Motif Discovery in Human ChIP–chip Data
Human TFBS tend to be longer and ‘‘fuzzier’’ than TFBS of

lower eukaryotes, and it is important to evaluate our
method’s performance on such motifs. To this end, we
applied DRIM to the ChIP–chip experiments of HNF1a,
HNF4a, HNF6 in liver and pancreas islets [46], as well as to
that of CREB [47]. For each of the TFs, we generated a list of
sequences containing 1,000 bases upstream and 300 down-
stream of the transcription start site (TSS). We ranked the list
according to the TF ChIP–chip signal and used it as input to
DRIM. DRIM successfully detected the TFBS of these TFs that
are reported in TRANSFAC with extremely significant p-
values: HNF1a liver—GTTAMWNATT (p ¼ 10�8), HNF4a
Islets—SCGGAAR (p ¼ 10�53), HNF6 Liver—ATCRAT (p ¼
10�57), and HNF6 Islets—ATCRAT (p ¼ 10�61). In the CREB
experiments we identified the palindromic motif TGACGT-
CA (p ¼ 10�16), which is known to bind CREB [47].

Comparison with Other Methods
Three properties of the mHG enrichment score embodied

in DRIM offer advantages over other motif discovery
methods: the dynamic cutoff, the rigorous control over false
positives, and the motif multiplicity model.

Dynamic versus rigid cutoffs. Most methods use an
arbitrary cutoff for set partition. For example, in previous

work [25] the authors use a cutoff of p-value , 10�3 on the
ChIP–chip signal in order to define the target set for motif
searching. In contrast, the mHG score uses a data-driven
flexible cutoff and chooses the set partition that maximizes
the motif enrichment.
To more systematically investigate the advantages of using

a flexible cutoff, we compared mHG with fixed set partition
HG [7] by disabling the flexible cutoff feature in DRIM. The
comparison was performed on ChIP–chip data of TFs whose
motif binding sites are well-characterized as well as on the
Aro80 binding site we identified. For each TF, we ranked the
sequences according to the ChIP–chip binding signal,
generated the motif occurrence vector, and computed its
HG enrichment using fixed target sets containing the top 10,
100, and 1,000 sequences as well as all sequences with ChIP–
chip signal ,10�3. The results are summarized in Figure 5. We
note that all of the scores are corrected for multiple-motif
testing. The mHG score is also corrected for the multiple-
cutoff testing. The mHG method yields superior results in all
six cases.
We performed additional comparisons of the mHG versus

the HG methods by applying both methods to simulations of
motif occurrence vectors (see Text S7 and Figure S6). In these
simulations mHG showed significantly better performance
than HG.
To further investigate the issue of setting a cutoff, we

compare, for a given TF and condition in the ChIP–chip
dataset, the number of promoters for which the binding
signal ,10�3 (denoted #(10�3)) with the number of promoters
at which mHG was attained (denoted n*). For 82 experiments,
#(10�3) � 4 and for 46 of these #(10�3) ¼ 0. In these cases a
10�3 fixed cutoff reduces the size of the target set and limits
the usability of any discovery algorithm. In Figure 6 we
compare #(10�3) and n* for some of the cases at which a motif
was found by mHG. Note that in a significant number of cases
the mHG score identified a significantly enriched motif even
when #(10�3) was very low. One extreme case is the TF SOK2
in YPD condition for which#(10�3) ¼ 0, yet mHG found a
significantly enriched motif.
Controlling false positives. The second advantageous

property of the mHG score is its ability to rigorously control

Figure 5. Comparison between HG and mHG Enrichment

The mHG and HG methods were applied to ChIP–chip data of six TFs.
The sequences were ranked according to the ChIP–chip binding signal,
and the enrichment of the correct binding motif was recorded using
mHG and HG with fixed target sets containing the top 10, 100, and 1,000
sequences as well as all sequences with ChIP–chip signal ,10�3. All
scores were corrected for multiple motif testing. The mHG score is also
corrected for the multiple cutoff testing. The 10�3 and mHG cutoffs for
each experiment are shown. It can be seen that the two cutoffs are
significantly different and that for all the tested TFs mHG produces better
results than HG in terms of enrichment of the true motif.
doi:10.1371/journal.pcbi.0030039.g005

Figure 6. Comparison of the Target Sets Sizes as Determined by the

Fixed versus the mHG Flexible Cutoffs

Each dot represents a ChIP–chip experiment where the x and y
coordinates are the number of promoters with p , 10� (standard
cutoff) and the number of promoters as determined by the mHG cutoff,
respectively. The dotted line is x ¼ y. TF names are given in Table S4.
doi:10.1371/journal.pcbi.0030039.g006
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false positives, due to calculation of an exact p-value. This
attribute is best demonstrated by comparing the perform-
ance of DRIM versus other motif-finding tools on negative
controls, that is, datasets whose original ranking was
randomly permuted. It is clear that in these cases we should
not find significantly enriched motifs. To this end we used the
same benchmark on which DRIM was tested (see Results,
Proof of principle). Using the same five random permutations
of ChIP–chip data, we applied the algorithms AlignACE [12],
MEME [8], and MDscan [33] on each of the random sets. Both
AlignACE and MEME reported significant motifs with many
A’s, probably due to the existence of polyA tails in the
intergenic regions. MDscan was used with a precompiled
background from yeast intergenic regions, and therefore it
did not report the polyA motifs, yet it did report motifs
including repeats of TA, probably as a result of TATA boxes.
In comparison, DRIM did not identify any significant motifs
in any of the random sets.

Binary versus multidimensional enrichment. The third
advantageous property is the extension of the binary enrich-
ment analysis to the multidimensional enrichment analysis
(see Methods, Multidimensional mHG score). The latter forms
the basis for dealing with motif multiplicity in a data-driven
manner. To test this property, we compared DRIM, which
uses the multi-mHG framework, with a restricted version of
DRIM, which uses the standard binary enrichment frame-
work. Out of 31 binding motifs identified by DRIM that were
also identified in other literature, the restricted version was
able to identify only 23. Furthermore, in some instances, both
methods were able to identify the correct motif site; however,
the motif significance using the multi-mHG framework was
several fold more significant without incurring additional
false predictions.

Discussion

In this paper we examine the problem of discovering
‘‘interesting’’ motif sequences in biological sequence data.
While this problem has often been regarded as tantamount to
discovering enriched motifs in a target set versus a back-
ground set, we point out an inherent limitation to this
formulation of the problem. Specifically, in most cases,
biological measurement data does not lend itself to a single,
well-substantiated partition into target and background sets.
It does, however, lend itself to ranking in a natural manner.
Our approach exploits this natural ranking and attempts to

solve challenges (c1)–(c4) (see Introduction, Open challenges
in motif discovery).
To address challenge (c1), instead of choosing an arbitrary

cutoff for set partition, we search for a cutoff that partitions
the data in a way that maximizes the motif enrichment. We
present evidence that shows that the flexible mHG cutoff
outperforms the rigid cutoff. One example of this is shown in
Figure 5, where the flexible cutoff yields better results for all
the tested TFs. Another example of the advantage of a flexible
cutoff is the two motifs detected in three TFs involved in the
sulfur amino acid pathway (Met4, Met31, and Met32). Figure 7
shows the number of motif occurrences in each of the top 59
promoters that were ranked according to Met32 binding
signal (data from [25]). The motifs are highly frequent in the
top 18 promoters, after which a strong drop in motif
frequency is observed. DRIM identifies this, and partitions
the set accordingly. In comparison, relying on the standard
cutoff of 10�3 results in a target set of the top 48 promoters,
most of which do not contain this motif. The signal-to-noise
ratio is thus diminished, which may explain why these motifs
were previously overlooked.
While the flexible cutoff is advantageous in many instances,

it also introduces a multiple testing problem. To circumvent
this (without resorting to strict multiple testing corrections
that may mask the biological signal), we developed an
efficient algorithm for computing the exact p-value of a
given mHG score. This addresses challenge (c2). Another
advantage of this exact statistical score is its straightforward
biological interpretation: the mHG p-value reflects the
probability of seeing the observed density of motif occur-
rences at the top of the ranked list under the null assumption
that all configurations of motif occurrences are equiprobable.
Motif multiplicity is often indicative of biological function.

It is therefore paramount to incorporate this type of
information into the motif prediction model. We do so in a
data-driven manner by developing the multi-mHG frame-
work, thus addressing challenge (c3). The advantages of the
multi-mHG model over the binary model are presented in
Results, Binary versus multidimensional enrichment.
False prediction of motifs in randomly generated data is

often mentioned as one of the drawbacks of computational
motif discovery [25]. We report the testing of DRIM on
random permutations of ranked sequences. When tested on
more than 100,000 motifs, DRIM did not identify any
significant motifs, thus addressing challenge (c4). The low
false-positive prediction of our method is mainly attributed

Figure 7. Motif Occurrences in the Top 59 (of ;6,000) Promoters That Were Ranked According to Met32 Binding Signal

A comparison is made between the data-driven mHG cutoff and the arbitrary fixed cutoff. It can be seen that the motifs are significantly more enriched
when the list is partitioned using the mHG cutoff.
doi:10.1371/journal.pcbi.0030039.g007
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to the fact that it is based on rigorous statistics and relies on
an exact p-value.

Another important issue that still requires consideration is
the characterization of the motif search space. In this study
we performed an exhaustive scanning of a restricted motif
space (containing ;105 motifs) followed by a heuristic search
for larger motifs. However, the motif search space can be
further extended to include motifs that are longer, ‘‘fuzzier,’’
or more complex. Additional considerations such as the
distance of the motif from the transcription start site may be
taken into account as well as logical relations between
different motifs (e.g., ‘‘OR,’’ ‘‘AND’’ operations). It is clear
that many of these features are required to correctly model
complex regulation patterns that are observed in higher
eukaryotes. Two inherent limitations need to be considered
when extending the search space: first, as the size of the motif
search space increases, the problem of efficiently searching
the defined space becomes more acute in terms of running
time. Second, since the size of the search space is virtually
endless, the problem of multiple testing rapidly erodes the
signal-to-noise ratio, requiring an appropriate refinement of
the statistical models.

To test our method, we constructed a dataset containing
ChIP–chip experiments of 203 putative TFs in Saccharomyces
cerevisiae [25,28]. Surprisingly, we discovered a significant
length bias in roughly one-third of these experiments. One
possible explanation for this phenomenon is nonspecific
binding between TFs and DNA, which causes longer
sequences to bind more TFs. This explanation is also
consistent with the ‘‘TF sliding hypothesis’’ [48]. Why only
some TFs exhibit this length bias binding tendency remains
an open question. To avoid false positives due to this
phenomenon, we opted to filter out all ChIP–chip experi-
ments that had significant length bias. Future work should
address this point and focus on developing statistics that are
insensitive to this type of bias.

We analyzed the filtered dataset using DRIM and report
novel putative TFBS motifs. Additional evidence that
indicates the newly discovered motifs are biologically func-
tional was also presented. One interesting finding is that the
Aro80 motif we identified, which exists only in seven copies
throughout the entire yeast genome, resides in Aro809s own
promoter. This finding suggests that Aro80 regulates its own
transcription by binding to its own promoter. Additionally,
three GATA binding sites that reside in the Aro80 promoter
adjacent to the motif occurrence lead us to speculate that
Aro809s putative self binding is inhibited by competing
GATA binding factors (for details see Figure 4B).

Another interesting observation is the CA repeat motifs,
which we identified in seven different yeast TFs as well as in
human DNA methylation. This type of low complexity motifs
have so far been mostly ignored or filtered out by other
computational methods. By contrast there is no need to
resort to this type of artificial filtering when using the mHG
statistics. Our findings in yeast suggest that for certain TFs
there is a significant correlation between a sequence’s
capacity to bind a TF and the presence of a CA repeat in
the sequence. This supports a previous hypothesis that CA
repeats alter the structure of DNA and thus contribute to TF
binding [34]. Our findings constitute concrete evidence of
this phenomenon and suggest it may be more frequent than
previously appreciated.

We also applied DRIM to high-throughput measurements of
methylated CpG islands [2] in human cancer cells, in order to try
to identify motifs that are enriched in hypermethylated regions.
Interestingly, we identified GA and CA repeat elements as highly
enriched inmethylated CpG regions of four different cancer cell
lines. This is in agreement with previous studies of CpG
methylated regions in other cell lines [39,40]. It is interesting
to ask whether these repeat elements play some active role in
CpG methylation. In [40] the authors give statistical argumenta-
tion against such a hypothesis. Instead, they hypothesize that CA
(or TG) repeats are caused by an increased mutation rate of
methylated CpGs that are deaminated into TpGs. Even if true,
this still does not explain the enrichment of the GA repeats.
Further experimental and bioinformatic interrogation of this
point is therefore called upon.
Overall, DRIM discovered ten novel motifs in methylated

CpG regions. Strikingly, nine of them are similar to DNA
sequence elements that bind the Polycomb complex in
Drosophila and/or human [41,42, 44]. The Polycomb complex
is involved in epigenetic silencing via histone methylation.
The suggested link between histone methylation and CpG
methylation is in agreement with recent work that demon-
strated the EZH2 protein interacts with DNA methyltrans-
ferases via the Polycomb complex [45]. We also note that the
DNA sequence motifs of the two pathways were conserved in
Drosophila and human, which is complementary to the
observation that the Polycomb proteins are evolutionarily
conserved [44,49]. Many of the motifs we found in the CpG
methylation data are similar across different types of cancer
cell lines. This may suggest that the CpG methylation
mechanism is orchestrated by DNA binding factors that are
similar in different types of cancer cell lines.
Perhaps the most important conclusion that can be drawn

from this study is that looking at biological sequence data in a
ranked manner rather than using an arbitrary fixed cutoff to
partition the data enables the detection of biological signals
that are otherwise overlooked. This suggests that other motif
detection methods that rely on fixed cutoffs may benefit from
dynamic partitioning. While the effectiveness of our approach
was demonstrated on ChIP–chip and methylation data, it can
also be applied to a wide range of other data types such as
expression data or GO analysis. The DRIM application is
publicly available at http://bioinfo.cs.technion.ac.il/drim.

Materials and Methods

The minimum hypergeometric score. In this subsection we
introduce the basics of the mHG statistics, and demonstrate how it can
be applied in a straightforward manner to eliminate the need for an
arbitrary choice of threshold. To explain the biological motivation of
mHG, consider the following scenario: suppose we have a set of promoter
regions each associated with a measurement, e.g., a TF binding signal as
measured by ChIP–chip [1]. We wish to determine whether a particular
motif specified in IUPAC notation, say CASGTGW, is likely to be a TFBS
motif. We rank the promoters according to their binding signals—strong
binding at the top of the list and the weak at the bottom (Figure 1i). Next,
we generate a binary occurrence vector with one or zero entries
dependent on whether or not the respective promoter contains a copy of
the motif (Figure 1ii). For simplicity we ignore cases where a promoter
contains multiple copies of the motif (a refined model, which takes motif
multiplicity into account, will be discussed later). Motifs that yield binary
vectors with a high density of 19s at the top of the list are good candidates
for being TFBS.

Let us assume for the moment that we know the correct physical-
based cutoff on the TF binding signal. The data could then be
separated into ‘‘strong binding promoters’’ (i.e., the target set) and
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‘‘weak binding promoters’’ (i.e., the background set). We are now
interested to know whether there is a particular motif for which the
target set contains significantly more motif occurrences than the
background set. Let N be the total number of promoters B of which
contain the motif, and n the size of the target set. Let X be a random
variable describing the number of motif occurrences in the target set.
Assuming a uniform distribution over all occurrence vectors with
these characteristics, the probability of finding exactly b occurrences
in the target set has a hypergeometric distribution, namely:

ProbðX ¼ bÞ ¼ HGðb;N ;B; nÞ ¼

n
b

� �
N � n
B� b

� �

N
B

� � ð1Þ

The tail probability of finding b or more occurrences in the target set
is:

ProbðX � bÞ ¼ HGTðb;N;B; nÞ ¼
Xminðn;BÞ

i¼b

n
i

� �
N � n
B� i

� �

N
B

� � ð2Þ

As we don’t really always have a strict definition of the target set,
we employ a strategy that seeks a partition for which the motif
enrichment is the most significant, and compute the enrichment
under that particular partition. Formally, consider a set of ranked
elements and some binary labeling of the set k ¼ k1,. . .,kN 2 f0,1gN.
The binary labels represent the attribute (e.g., motif occurrence). The
mHG score is defined as:

mHGðkÞ ¼ min1�n,NHGTðbnðkÞ;N;B; nÞ; ð3Þ

where bn(k)¼
Pn

i¼1 ki. In words, the mHG score reflects the surprise
of seeing the observed density of 1’s at the top of the list under the
null assumption that all configurations of 1’s in the vector are
equiprobable. The cutoff between the top of the list and the rest of
the list is chosen in a data-driven manner so as to maximize the
enrichment (Figure 1iii). We discuss other variants of the mHG score
in Texts S2 and S3.

Calculating the p-value of the mHG score. The mHG flexible choice
of cutoff introduces a multiple testing complication and therefore
gives rise to the need for computing the exact p-value. In Text S1 and
Figure S2 we demonstrate several bounds for mHG p-values. These
bounds may be used for rapid assessment of the p-value of a given
mHG score, which can be instrumental in improving algorithmic
efficiency. In this section, we describe a novel dynamic programming
algorithm for calculating the exact p-value of a given mHG score. This
approach is related to a previously described approach for calculat-
ing exact p-values of other combinatorial scores ([50,51], with details
in [52]).

As noted in the previous section, the mHG score depends solely
on the content of the label vector k. Set N and B, and consider the
space of all binary label vectors with B 19s and N�B 09s: K ¼

f0,1g(N�B,B). Assume that we are given a vector k02K, for which
we calculate the mHG score mHG(k0) ¼ p. We would like to
determine pval(p) ¼ Prob(mHG(k) � p) under a uniform distribu-
tion of vectors in K. Given an mHG score p, we do this by means of
path counting. The space of all label vectors K ¼ f0,1g(N�B,B) is
represented as a two-dimensional grid ranging from (0,0) at the
bottom left to (N,B) at the top right. Each specific label vector k2K
is represented by a path (0,0) ! (N,B) composed of N distinct steps.
The ith step in the path describing a vector k is (1,0) if ki ¼ 0 and
(1,1) if ki¼ 1 (see Figure 8). Each point (n,b) on the grid corresponds
to a threshold (on ranks) n, and the respective value b ¼ bn(1). It can
therefore be associated with a specific HGT score: HGTn(k) ¼ HGT
(bn(k );N,B,n). A subset of the points on the grid can be characterized
as those points (n,b) for which HGT (b;N,B,n) � p. We denote this
subset R ¼ R(p) (see Figure 8).

The (0,0) ! (N,B) path representing k visits N distinct grid points
(excluding the point (0,0)), representing the N different HGT scores
that are considered when calculating its mHG score: mHG(k) ¼
min1�n,NHGTn(k). mHG(k) � p if the path representing k visits R.
Denote by P(n,b) the total number of paths (0,0) ! (n,b) and by
PR(n,b) the number of paths (0,0)!(n,b) not visiting R. We then have:

pvalðpÞ ¼ jfk 2 K : mHGðkÞ � pgj
jKj ¼ PðN;BÞ �PRðN;BÞ

PðN;BÞ

¼ 1�PRðN;BÞ
PðN ;BÞ

ð4Þ

We calculate PR(n,b) by means of dynamic programming. Initially,
set PR (0,0)¼1 and PR(n,b)¼0 for b¼�1 and along the diagonal b¼ n
þ 1, 0 � n � B. Then, for each 1 � n � N, and max(0,B�Nþ n) � b �
min(B,n) calculate PR(n,b) using the formula:

PRðn; bÞ ¼ 0 ifðn; bÞ 2 R
PRðn; bÞ ¼ PRðn� 1; bÞ þPRðn� 1; b� 1Þ ifðn; bÞ =2 R

In total, we perform a O(N2) routine in order to calculate PR(N,B)
for a given score p. Trivially, we have P(N, B)¼ ðNB Þ and pval(p) may
be directly computed from Equation 4.

Multidimensional mHG score. So far we have dealt with enrich-
ment of binary attributes, in which a one or zero indicated whether
or not the attribute appeared. There are cases where one would like
to associate a number with an attribute. We revisit the scenario we
described in previous sections in which we tried to determine
whether a particular motif is likely to be a TFBS motif. The
promoters were ranked according to their binding signals, and the
corresponding binary occurrence vector was generated. Notice that
some promoters may contain several copies of a particular motif.
Clearly, this information is valuable and should be incorporated in
the enrichment analysis. How exactly to incorporate this information
is not clear. For example, consider two motif occurrence vectors
generated for two different motifs, where the top ten entries of the
vectors are all 1’s and all 2’s, respectively. Is the second motif more
enriched than the first? Clearly, this depends on the rarity of double
motif occurrences compared with single occurrences in the corre-
sponding vectors. If the frequency of 2’s is lower than that of 1’s, then
the second motif is more significant. However, if they are equally
frequent (this is often the case for degenerate motifs such as poly A’s)
then both motifs are equally enriched.

To quantitatively capture this notion and address motif multi-
plicity in a data-driven manner, we propose a multidimensional
hypergeometric model, which extends the previously defined frame-
work for enrichment analysis to nonbinary label vectors. Formally, let
k be a uniformly drawn label vector k ¼ k1,. . .,kN 2 f0. . .kgN
containing B1 1’s, B2 2’s . . . Bk k’s and ðN �

Pk
j¼1 BjÞ. We would like

to test for enrichment of 1’s, 2’s...k’s at the top of k. We define the
multidimensional hypergeometric score (multiHG) for a set S of size
N consisting of kþ1 subsets S0, S1, S2 . . . , Sk of respective sizes N – (B1
þ B2 þ . . .Bk), B1, B2. . ., Bk. Given a subset S9 � S of size n, the
probability of finding exactly b1 elements of S1 and b2 elements of
S2. . ., bk elements of Sk within S9 is:

multiHGðN ;B1; . . . ;Bk; n; b1; . . . ; bkÞ

¼

n
b1; . . . ; bk

� �
N � n

B1 � b1; . . .Bk � bk

� �

N
B1; . . .Bk

� � ;

ð5Þ

Figure 8. Two-Dimensional Grid Used for Calculating mHG p-Value

In this example N ¼ 20, B ¼ 10, p ¼ 0.1. Light-shaded area describes all
attainable values of n and b. Dark-shaded area describes the subset R:
all values of n and b for which HGT(b;N,B,n) � p. Two (0,0) ! (N,B)
paths are depicted, representing the binary label vectors
k1 ¼ f1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , . 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0g a n d k2 ¼
f0,0,0,1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,1,1g. The path k1 traverses R, demon-
strating that mHG (k1) � p. The path k2 does not traverse R,
demonstrating that mHG (k1) . p.
doi:10.1371/journal.pcbi.0030039.g008
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Let X1,. . .Xk be random variables describing the number of
19s, . . . ,k’s, respectively, at the top n positions of k. The multi-
hypergeometric tail probability (multiHGT) of seeing at least b1 1’s, at
least b2 2’s,. . ., and at least bk k’s at the top n positions of the vector is:

multiHGTðN ;B1; . . . ;Bk; n; b1; . . . ; bkÞ ¼ PðX1 � b1; . . .Xk � bkÞ

¼
XminðB1 ;nÞ

i1¼b1
� � �

XminðBk ;n�
Pk�1

j¼1 ijÞ

ik¼bk

n
i1; . . . ik

� �
N � n

B1 � i1; . . .Bk � ik

� �

N
B1; . . .Bk

� � ;

ð6Þ

The definition of the mHG score can now be extended to the
minimum of the set of multiHGTs calculated on all prefixes of k.

multi� mHGðkÞ

¼ min
1�n�N

ðmultiHGTðN;B1; . . . ;Bk; n; b1ðn;kÞ; . . . bkðn; kÞÞÞ;

ð7Þ

where bj(n, k)¼
Pn

i¼1 Iðki ¼ jÞ. Exact p-values for the multidimensional
mHG, under a uniform null distribution, can be computed in a k-
dimensional space using a path enumeration strategy similar to the
one we used in the binary case. The details on how to compute this p-
value in a three-dimensional space are explained in Text S4.

The DRIM software. The software tool DRIM implements the mHG
framework for motif identification in ranked DNA sequences. A flow
chart of DRIM is provided in Figure 1. In the rest of this section we
describe the details of this implementation.

Exhaustive search of the restricted motif space. Ideally we would like to
exhaustively search through the space of all biologically viable motifs
and identify those that are significantly enriched at the top of the
ranked list. However, this is infeasible in terms of running time (the
space of viable TF binding sites includes motifs of size up to 20, i.e.,
1520 k-mers). We therefore resort to a simple strategy where the motif
search is broken into two stages: first an exhaustive search on a
restricted motif space is performed. The ‘‘motif seeds’’ that are
identified in the preliminary search are used as a starting point for a
heuristic search of larger motifs in the entire motif space. The
restricted motif space S used in this study is the union of two
subspaces S1 and S2: S1 ¼ fA,C,G,T,R,W,Y,S,Ng7, where the IUPAC
degenerate symbols (i.e., R,Y,W,S,N) are restricted to a maximum
degeneracy of 2 and S2 ¼ fA,C,G,Tg3N3�25fA,C,G,Tg3. The rationale
behind the usage of the restricted IUPAC alphabet in S1 instead of the
complete 15 symbol alphabet stems from DNA–TF physical inter-
action properties and TFBS database statistics as explained in
previous work [53]. S2 captures motifs that contain a fixed gap
(different motifs can have different gap sizes), which is characteristic
of some TFs such as Zinc fingers).

mHG enrichment. For each of the motifs in S, we generate a ranked
occurrence vector and compute the enrichment in terms of the
multidimensional mHG. Due to running time considerations, we
restrict the multidimensional mHG to three dimensions. This means
that the model assumes each intergenic region contains either 0, 1, or

�2 copies of a motif. To test whether this assumption is reasonable in
the case of true TFBS motifs, we examined the occurrence
distribution of TFBS motifs that were experimentally verified in S.
cerevisiae (see Figure 9). It can be seen that the assumption holds for
the five TFs that were tested since the majority of all intergenic
regions contained either zero, one, or two copies of the TFBS. At the
end of this stage, only motif seeds with mHG score ,10�3 are kept.
Similar motifs are filtered (as explained in Texts S5 and S6), and the
remaining motif seeds are fed into the heuristic search module for
expansion, Figure 1iii–1iv.

Motif expansion by heuristic search. The filtered motif seeds are used as
starting points for identifying larger motifs that do not reside in the
restricted motif space. This is done through an iterative heuristic
process that employs simulated annealing. The objective function is
to minimize the motif mHG p-value. We tested two different
strategies for determining valid moves in the motif space. In the
first, we defined a transition from motif M1 to M2 as valid if M1 and
M2 are within a predefined Hamming distance D, with all valid moves
being equiprobable. Additional bases can also be added to the motif
flanks, thus enabling motif expansion. Note that the mHG adaptive
cutoff is recalculated at each step. In the second strategy, all the motif
occurrences in the target set that are within Hamming distance D are
aligned. A consensus motif above IUPAC is extracted and the
algorithm attempts a transition to that motif. While the second
strategy converges much faster than the first, it is also more prone to
converge to local minima (in the final application we use the second
strategy with D ¼ 1). At the end of the process, the exact p-value of
each of the expanded motifs is computed. To correct for multiple
motif testing, the p-value is then multiplied by the motif space size.
Only motifs with corrected p-value ,10�3 are reported.

Optimizations and running time. The DRIM application was imple-
mented in Cþþ. A ‘‘blind search’’ requires ;100,000 motifs to be
checked for enrichment in each run. It is therefore paramount to
optimize the above-described procedures to enable a feasible running
time. There are two bottlenecks in terms of running time: the motif
occurrence vector generation and the mHG computation. We
developed several optimization schemes to improve both. In the
final configuration, the running time on a list of 6,000 sequences with
an average size of 480 bases took ;3 minutes on a Pentium IV, 2 GHz.

Characteristics of datasets. ChIP–chip dataset. A number of assays
have been recently developed that use immunopercipitation-based
enrichment of cellular DNA for the purpose of identifying binding or
other chemical events and the genomic locations at which they occur.
Location analysis, also known as ChIP–chip, is a technique that enables
the mapping of transcription binding events to genomic locations at
which they occur [1,54]. The output of the assay is a fluorescence dye
ratio at each spot of the array. If spots are taken to represent genomic
regions, then we can regard the ratio and p-value associated with each
spot as an indication of TF binding in the corresponding genomic
region. We applied DRIM to S. cerevisiae genome-wide location data
reported in Harbison et al. [25] and Lee et al. [28]. The first consists of
the genomic occupancy of 203 putative TFs in rich media conditions
(YPD). In addition, the genomic occupancy of 84 of these TFs was
measured in at least one other condition (OC). In each of the
experiments, the genomic sequences were ranked according to the
TF binding p-value. Surprisingly, we observed that 69 of the 203 ranked
sequence lists of YPD had significantly longer sequences at the top of
the list (first 300 sequences) comparedwith the rest of the list with t-test
p-value � 10�3. We observed a similar phenomenon in 76 of the 148
ranked sequence lists of OC experiments (see Figure S1). In other
words, for some TFs, longer sequences are biased toward stronger binding
signals. This observation is unexpected since, although longer probes
hybridize more labeled material than shorter probes, the increase
should be proportional in both channels. This type of length bias may
cause spurious results under our model assumptions and hence the
final dataset, termed ‘‘Harbison filtered dataset,’’ refers to the
remaining 207 experiments (135 YPD, and 72 OC) of 162 unique TFs
that did not have length bias (Table S1).

An additional ChIP–chip dataset was constructed using the data
reported in Lee et al. [28] containing 113 experiments in rich media.
The data is partially exclusive to the data of Harbison et al. [25]. The
same filtering procedure was performed, resulting in a set of 65
experiments, termed ‘‘Lee filtered dataset.’’

Methylated CpG dataset. Using a technique similar to ChIP–chip,
termed methyl-DNA immunoprecipitation (mDIP), enables the
measurement of methylated CpG island patterns [2,55]. The third
dataset contains the CpG island methylation patterns of four
different human cancer cell lines (Caco-2, Polyp, Carcinoma, PC3)
where several replicate experiments were done for each of the cell

Figure 9. The Distribution of TFBS Occurrence Multiplicities per

Intergenic Region in S. cerevisiae Is Shown for Five TFs Whose TFBS

Motif Was Experimentally Verified

Note that the y-axis is logarithmic. It can be seen that in most instances
the TFBS appears in either zero, one, or two copies per intergenic region.
doi:10.1371/journal.pcbi.0030039.g009
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lines. In each of these experiments, the CpG methylation signal was
measured in ;13,000 gene promoters as reported in [2].

Supporting Information

Figure S1. Observed versus Expected Length Bias

For each of the 148 OC ChIP–chip experiments reported in [25], we
ranked the yeast intergenic sequences according to their binding
signal. The lengths of the top 300 sequences in each experiment were
compared with the lengths of the rest of the sequences using a
student t-test. The x-axis is the t-test p-value and y(x) is the number of
TF experiments with p � x. The blue line is the observed cumulative
distribution of the t-test p-values in the 148 experiments. The red line
is the expected cumulative distribution of t-test p-values in randomly
permuted sequence rankings. It can be seen that more than half of
the ChIP–chip experiments have a statistically significant difference
between the lengths of sequences that bind the TF the strongest
compared with the lengths of the rest of the sequences.

Found at doi:10.1371/journal.pcbi.0030039.sg001 (21 KB PNG).

Figure S2. Comparison of p-Value Bounds, Exact p-Value Calculation,
and Observed Frequencies of mHG Scores for Two Synthetic Cases:
(A) N¼ 600, B¼ 300; (B) N ¼ 330, B ¼ 30

In each case the following values were generated for several different
mHG scores: lower bound (p), trivial upper bound (Np), tighter upper
bound (Bp), exact p-value calculation (pVal), and observed p-values
over 10,000 random instances (sim). Note the improvement of the
tighter upper bound (Bp) when N � B.

Found at doi:10.1371/journal.pcbi.0030039.sg002 (13 KB PNG).

Figure S3. Comparison of mHG Score and p-Value Distributions for
Motifs inRandomlyRankedSequenceswithThose ofTrueTFBSMotifs
in Ranked Lists Derived from the Corresponding ChIP–chip Assays

;100,000 motifs were scanned in 400 randomly ranked genomic
sequences, and their corresponding corrected p-value (A) andmHG score
(B) were recorded. The corrected p-values involve two levels of multiple
test corrections: correction on the number motifs that were tested; and
correction for the multiple cutoffs that are tested as part of the mHG
optimization process. None of the testedmotifs had a corrected p-value,
10�3. DRIM was applied on the ChIP–chip data of five TFs and the mHG
scores, and corrected p-values of the true TFBS motifs (as previously
determinedexperimentally)were recorded. In all instances, the trueTFBS
motifs were predictedwith p-values thatwere several orders ofmagnitude
more significant than the best random set motif p-value.
Found at doi:10.1371/journal.pcbi.0030039.sg003 (81 KB JPG).

Figure S4. Compatibility between the BSAro80 Motif Identified by
DRIM and Previously Reported Mutagenesis Studies [32]

The Aro9 promoter region from base�169 to�133 as well as six other
copies containing mutations and deletions are shown. These regions
were used to construct hybrid promoters and measure the expression
of a reporter gene, which is dependent on the binding of Aro80 to the
promoter [32]. The two partially overlapping copies of BSAro80 that
reside in the Aro9 promoter and an additional sequence element that
is similar to the canonic BSAro80 (two different bases) are marked with
green and blue arrows, respectively. It can be seen that the expression
values are highly compatible with the number of intact BSAro80
copies, i.e., more intact copies yield higher expression.

Found at doi:10.1371/journal.pcbi.0030039.sg004 (11 KB PNG).

Figure S5. Met4-Met28-CBF and Met4-Met28-Met31/32 Complexes
Binding to DNA

(A) Schematic representation of Met4-Met28-CBF and Met4-Met28-
Met31/32 complexes [37,38].
(B) A hypothetical Met4-Met28-CBF-Met31/32 complex. Immunopre-
cipitation of any of the TFs in the complex will precipitate the same
set of sequences, which explains why DRIM identifies the same two
motifs for all TFs in the complex.

Found at doi:10.1371/journal.pcbi.0030039.sg005 (67 KB PNG).

Figure S6. Comparison of the mHG and HG Methods on Simulations
of Motif Occurrence Vectors

The vectors were generated according to a rank-dependent distribu-

tion (see the section, Comparing mHG and HG on simulated motif
occurrences) with 18 different parameter combinations (a ¼ 10, 50,
100; b¼ 0.01, 0.05, 0.1; u¼ 0.01, 0.1). The�log fraction between mHG
and HG p-values in cases where the p-value of one of the methods was
smaller than 10�3 are shown.

Found at doi:10.1371/journal.pcbi.0030039.sg006 (117 KB JPG).

Table S1. List of TFs in the Harbison Filtered Dataset

Found at doi:10.1371/journal.pcbi.0030039.st001 (27 KB XLS).

Table S2. Motif Predictions of DRIM on the Harbison Filtered
Dataset

Found at doi:10.1371/journal.pcbi.0030039.st002 (245 KB XLS).

Table S3. Comparison between the Predictions of DRIM and Those
Reported in [25]

Found at doi:10.1371/journal.pcbi.0030039.st003 (18 KB XLS).

Table S4. Comparison between mHG Flexible Cutoffs and 10�3 Fixed
Cutoffs in Yeast ChIP–chip Data

Found at doi:10.1371/journal.pcbi.0030039.st004 (15 KB XLS).

Table S5. Gene Accession Numbers

The National Center for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov) accession numbers for the genes discussed in
the paper.

Found at doi:10.1371/journal.pcbi.0030039.st005 (18 KB XLS).

Text S1. Bounds for the mHG p-Value

Found at doi:10.1371/journal.pcbi.0030039.sd001 (137 KB DOC).

Text S2. Partition-Limited mHG Score

Found at doi:10.1371/journal.pcbi.0030039.sd002 (24 KB DOC).

Text S3. mHG and Expression

Found at doi:10.1371/journal.pcbi.0030039.sd003 (24 KB DOC).

Text S4. p-Value of the Three-Dimensional mHG Score

Found at doi:10.1371/journal.pcbi.0030039.sd004 (47 KB DOC).

Text S5. Motif Similarity

Found at doi:10.1371/journal.pcbi.0030039.sd005 (38 KB DOC).

Text S6. Filtering Similar Motifs

Found at doi:10.1371/journal.pcbi.0030039.sd006 (24 KB DOC).

Text S7. Comparing mHG and HG on Simulated Motif Occurrences

Found at doi:10.1371/journal.pcbi.0030039.sd007 (21 KB DOC).

Accession Numbers

Accession numbers for the genes discussed in the paper are given in
Table S5.
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